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Genomic Structure: Proposed Theory

Protein Communication Channel Evolution: Constant Point Mutation Rate

The protein communication channel is uniquely characterized by the probability transition 
matrix, Q (k) = {qi,j (k)}, 1≤i,,j≤20, at time k of the amino acids.

Evolution: Time-Varying Point Mutation Rate

Genomic Structure: Deterministic Analysis

Analogy and Differences with a Communication Engineering System

Experimental Results

Genomic Structure:Stochastic Analysis

Protein Communication Channel 

Adaptive evolution has fashioned living organisms as agents of information 
acquisition, analysis, storage, and transmission. How has this happened? How 
have living systems evolved to handle the same problems with which we are 
confronted in this so-called Information Age: problems of information storage 
and processing, problems of transmission and reliability ?

P: a first-order Markov probability transition matrix between amino acids. Only the terms of the first 
degree in α (k) are retained. For display clarity, the dependence on the time k has been omitted.

pk = p0 Q(1) Q(2) · · ·Q(k),

where Q ∈ {PAM,P}.

P takes into account all possible mutations between amino acids whether they 
are accepted or rejected by natural selection. The PAM transition matrix is 
estimated from protein sequences and hence takes into account the accepted 
mutations only.

Proposition 1: (Convergence of the amino acid distribution) Consider an initial probability 
distribution of the amino acids at time 0, p0 Then, the probability distribution of the amino 
acids converges, over time, towards a stationary distribution given by s1 if Q = P and s2
if Q = PAM250, where
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The experimental distribution is

Proposition 2: (Rate of Convergence) {p0Qk}k≥1 converges at a geometric rate with 
parameter λ2, where   λ2 = 0.53, if Q = PAM250; 

λ2  ≤ 1 − α / 2,  if Q = P.

Theorem 1:(Weak Ergodicity result) Consider a finite number of PAM matrices denoted 
by PAM(1),· · · , PAM(N), where PAM(i) can be PAM1 or PAM160 or PAM250, etc, for all i = 
1, · · · N, .Consider the sequence: Tp,k = tp+1tp+2 · · · tp+k, where each ti ∈ {PAM(1), · · ·
PAM(N)}. That is at each time k, the probability transition matrix is some PAM matrix. 
Then, Tp,k is weakly ergodic at a uniform geometric rate for all p ≥ 0. So the sequence 
{pk}k≥1tends to a sequence of distributions independently of p0.

Theorem 2: (Strong Ergodicity Result) Consider a point mutation rate, α (k), which is 
bounded uniformly on k, i.e., 0 < a ≤α (k) ≤ b < 1. Then the products Tp,k = Pp+1 · · ·Pp+k

are strongly ergodic. Thus, the sequence {pk}k≥1converges towards the stationary 
distribution s1 independently of the initial distribution p0. Moreover, the convergence rate 
is at least geometric.

Coding and Non-Coding Regions in DNA

We show that introns protect coding regions in the DNA sequence from frequent
errors in the way hollow uninhabited structures are used by the military to protect 
important installations, such as aircraft hangars and missile  launching facilities, 
from a bomb attack by serving as a dummy target that resembles the protected 
structure. 
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Under the assumption of a Poisson (λ) noise, we obtain the probability of error:

Taking the derivative of Pe e with respect to lk, we obtain the following coupled 
system for the optimal exon lengths:

An obvious solution is obtained when lk = M / K for all k = 1, · · · ,K.

The asymmetric distribution, which best approximates δM/ K would have its mode very close 
to its mean. Amazingly, the exon length distribution of the human genome has its mode 
almost equal to its mean obtained at about 170 nucleotides!
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Let p(l) be the continuous distribution of the length of exons. 

Stochastic Optimization Problem:
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Random Walk Model

Probability of Error Analysis
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